Development of a cost analysis-based defect-prediction system with a type error-weighted deep neural network algorithm

نویسندگان

چکیده

Abstract With the growing interest in smart factories, defect-prediction algorithms using data analysis techniques are being developed and applied to solve problems caused by defects at manufacturing sites. Cost benefit is an important factor consider, can be obtained applying such algorithms. Existing usually aim reduce error rate of prediction model, rather than focusing on cost for practical application models. Therefore, this study develops a algorithm considering costs systematization field application. To end, type error-weighted deep neural network (TEW-DNN) proposed that applies loss function set different weight each error, conducted search optimal weight. A analysis-based system designed TEW-DNN cyber-physical environment. The efficacy demonstrated through case involving die-casting factory South Korea.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis

The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...

متن کامل

A New Architecture Based on Artificial Neural Network and PSO Algorithm for Estimating Software Development Effort

Software project management has always faced challenges that have often had a great impact on the outcome of projects in future. For this, Managers of software projects always seek solutions against challenges. The implementation of unguaranteed approaches or mere personal experiences by managers does not necessarily suffice for solving the problems. Therefore, the management area of software p...

متن کامل

Software defect prediction using cost-sensitive neural network

The software development life cycle generally includes analysis, design, implementation, test and release phases. The testing phase should be operated effectively in order to release bug-free software to end users. In the last two decades, academicians have taken an increasing interest in the software defect prediction problem, several machine learning techniques have been applied for more robu...

متن کامل

a new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot

abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...

15 صفحه اول

DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car

We present DeepPicar, a low-cost deep neural network (DNN) based autonomous car platform. DeepPicar is a small scale replication of a real self-driving car called Dave2 by NVIDIA, which drove on public roads using a deep convolutional neural network (CNN), that takes images from a front-facing camera as input and produces car steering angles as output. DeepPicar uses the exact same network arch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Design and Engineering

سال: 2022

ISSN: ['2288-5048', '2288-4300']

DOI: https://doi.org/10.1093/jcde/qwac006